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Financial institutions often employ 
multiple interest rate models for different 
purposes, resulting in inconsistent model 
outputs.

This paper seeks to address the current 
challenges related to valuing financial 
instruments by introducing an arbitrage-
free interest rate model that is consistent 
with a negative rate regime, transparent 
in rate distribution, and parsimonious in 
specifying parameters. 

The described model has a broad range of 
applications, including derivative trading, 
portfolio management, and risk 
management. 
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This paper seeks to address the current challenges related to valuing 
financial instruments by introducing an arbitrage-free interest rate model 
that is consistent with a negative rate regime, transparent in rate 
distribution, and parsimonious in specifying parameters. The described 
model has a broad range of applications, including derivative trading, 
portfolio management, and risk management. 

Re-evaluating interest rate models today is important because most 
interest rate models were developed in a much higher interest rate 
regime; few models had anticipated rates falling to 1.5%. An 
inappropriate interest rate model will affect the pricing not just fixed 
income derivatives, but also equity derivatives, loans, and bonds. The 
interest rate model also affects credit risk management under the 
Current Expected Credit Loss (CECL). Indeed, this paper shows that the 
market has already priced in negative rates in some swaptions in the 
current low-interest-rate regime in the US. And financial engineers can 
extend the proposed model for applications in a broad range of interest 
rate regimes. 

The paper model can be used as a standardized model in option pricing because the 
model is transparent, specified by only five parameters. The model meets the standard 
requirements for interest rate models: 

 accept negative interest rates with the distribution of rates bounded;

 exhibit mean reversion of interest and accept the market observed term structure of 
volatilities;

 calculate the greeks at all nodes because the model remains “differentiable” in all rate 
regimes, whereby ad hoc constraints of rate floors would fail; and

 calculate American option types by backward substitution, without using numerical 
optimization for rational option exercise that is required by non-combining paths and 
which may incur errors in negative interest rate regimes.

Introducing an 
Interest Rate 
Model 
Applicable 
also in a Low 
Interest Rate 
Regime

INTRODUCTION

Kochkodin, Bloomberg News, September 2019, reported that “negative interest rates broke 
the Black Scholes model, Pillar of Modern Finance” [6]. 

Consistent with Kochkodin’s report, this paper shows how and why the current low-interest -
rate regime requires us to evaluate the current implementation of interest rate models. 
Financial institutions often employ multiple interest rate models for different purposes, 
resulting in inconsistent model outputs. The process is arcane despite the central importance 
of models in financial institutions and in light of tremendous progress made in financial and 
information technologies. 
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MODELING FRAMEWORK

Ho-Lee (1984) shows that the interest rate model is specified by the movement of a one period 
bond that is described by the one-period forward price with up and down movements of  1/(π(i, 
n) +(1- π(i, n))δ(i, n) and  δ(i, n)/(π(i, n) +(1- π(i, n))δ(i, n)), respectively for each state i and time n. 
Therefore, the volatilities represented by δ(i, n) depend on state and time, and not necessarily 
constant. Ho-Mudavanhu (2007) uses this approach to specify the term structure of local 
volatilities, depending on both state and time, as described by equation (1) 

      (1) 

where 

 (2) 

and 

 (3) 

Ho-Mudavanhu further presents the pricing models using local volatilities specifications. In sum, 
Ho-Lee shows that any lattice arbitrage-free interest rate model can be formulated by the 
forward rates and the local volatilities σ(i, n) at each state i = 0… n and time step n. This paper 
will use the Ho-Lee framework to present the Model that would still be applicable in today’s low 
interest rate regime, as lognormal and other models fail. 

LOCAL VOLATILITIES MODELS

This paper first proposes a class of arbitrage-free models by expressing σ(i, n) as 

 σ(i , n) = f(n). n. g(i, n; p)√∆t      (4) 

where Δt is the step size of the lattice. For example, the monthly step-
size would be 1/12. 𝑓𝑓  (𝑛𝑛  ) is the term structure of volatilities, 
independent of the states i. g(i, n; p) is a discrete frequency 
distribution for a given time n and the distribution parameters p, 
where p can be a vector of parameters.  

For example, the frequency distribution can be uniform with 
probability 1/n or the probability distribution can be a binomial with 
a probability parameter p. 

Following Ho-Mudavanhu, the term structure of volatilities can be represented by 

 f(n) = (a + bn) exp( −cn) + d   (5) 

  (6) 

  (7) 

𝑛   be defined as

σ(i,n)=f(n).g(i,n)

f(n)=(a+bn)  exp( -cn)+d

g(i,n)=min(r(i,n),R)

δi
n (T)= δi

n δi
(n+1) (T+1)((1+δ(i+1)

(n+1) (T-1))/(1+δ(i+1)
(n+1) (T-1))

Local Volatilities 
Models remain 
arbitrage-free in 
negative interest 
rate regimes and 
consistent with 
historical rate 
movements

 Let  𝛿𝛿  i

δin = exp (−2f(n). n . g(i, n; p)√∆t)

Ho-Mudavanhu shows that the arbitrage-free recombining lattice model requires that



Then the one-period bond price can be constructed recursively using the equation below.    

Equations 5 to 8 complete the specification of the class of Local Volatilities Model. The 
first factor is the one-period forward price. The second factor represents the term 
premium as a result of uncertainties to ensure the rate movements are arbitrage free. The 
third term specifies the volatilities of interest rates. Explanations of these factors are 
provided in Ho-Lee (1984).  Appendix A also provides the recursive algorithm in specifying 
equation (8) providing clarity in the exposition of the model. 
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𝑃𝑃𝑖𝑖𝑛𝑛 = 𝑃𝑃(𝑛𝑛+1)
𝑃𝑃(𝑛𝑛)

∏ 1+ 𝛿𝛿0𝑘𝑘−1(𝑖𝑖−𝑘𝑘)
1+ 𝛿𝛿0

𝑘𝑘−1(𝑖𝑖−𝑘𝑘+1)
𝑖𝑖
𝑘𝑘=1 ∏ 𝛿𝛿𝑛𝑛𝑚𝑚−1𝑖𝑖−1

𝑚𝑚=0 (8)



This section uses equation (4) to show that the 
Local Volatilities Models can provide transparency of the 
calibration solution. Local Volatilites models can determine 
the risk neutral probability of the rates passing any 
segments on the lattice. Referring to equation (4) the local 
volatilities are given by    

   σ(i , n) = f(n). n. g(i, n; p)√∆t  

Note that the term structure of volatilities f(n) is independent of the 
state i. Therefore f(n) is constant at the nth step for all i.  

In particular, for a specified time n and g(i, n; p) a skewed binomial 
distribution, Appendix B provides the following equation (9):  
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Prob ( x < r) = [r – r(min,n)]
[r(max,n)− r(min,n)]

∑ �𝑛𝑛𝑗𝑗�(0.5)𝑛𝑛 𝑖𝑖∗
𝑗𝑗=0

∑ �𝑛𝑛𝑖𝑖�𝑝𝑝
𝑖𝑖(1−𝑝𝑝)𝑛𝑛−𝑖𝑖𝑖𝑖∗

𝑗𝑗=0
   (9) 

Let the highest and lowest rate of the binomial lattice at time n specified by r(max, n) and 
r(min, n) respectively. Then the probability of rates below any specified rate r is dependent on 
(1) the ratio of r –  r(min, n) to  r(max, n) -  r(min, n)). 
Probability Stratification depicts the rate distribution of Equation (9). Figure 1 shows that 
the probability is related to the stratification 

[r – r(min,n)]
[r(max,n)− r(min,n)]

adjusted by the ratio of the cumulative binomial distribution of the normal to the skewed 
distribution. For a special case, when r = 0  then equation (9) measures the likelihood of 
negative rate occurring at time n as implied by swaptions or other interest rate option prices.  

Referring to Figure 1, Equation (9) (next page) is important because the model provides 
transparency of the interest rate model.  It provides the depiction of the probability distribution 
of rates at a particular future date, for example, the probability of the short rates lying 
between 6% and 7% in 10 years.  For this reason, equation (9) provides a visual depiction of the 
changes in the interest rate model when the market yield curve changes in shape or the term 
structure of volatilities change with the market perceived uncertainties. 

Local Volatilities 
Models determine 
the Rate 
Stratification that 
provides model 
transparency

RATE STRATIFICATION: 

PROBABILITY FREQUENCY DISTRIBUTION OF RATES
Because interest rate models are central to many practices in the capital market, they 
should be transparent and validated. However, most models today remain black boxes to 
the users, providing no simple way to check the specifications or intuitive explanations of 
the model. Transparency is particularly important because the model efficacy may depend 
on the interest rate regime and the financial instruments being analyzed.  
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Figure 1. Model Interest Rate Probability Surface 

Figure 1 depicts the probability frequency of rates reaching level r (x-axis) at time n, as the 
number of quarters. Dark blue denotes the low probability and green the high probability. The 
result shows that the rates evolve within a range of 1.5% and 4.0% with a wider range in 10 years.

Another application of equation (9) is to enable risk managers to 
selects interest rate scenarios for stress testing or income 
simulation. For quantitative modelling, the equation suggests 
stratified sampling technique for valuation. This is because equation 
(9) provides a simple metric to measure the likelihood of the 
selected scenario within the space of interest rate movements and 
to identify the comprehensiveness of the coverage of the selected 
scenarios of potential risks.   

For example, some models run 240 Monte-Carlo simulations to 
value 1-4 family mortgages. If the model is using either lognormal or 
normal models, then the sparse sampling may mis-estimate the 
probabilities of the path space. 

Further, the sample size must also depend on the yield curve 
regime. Therefore, evaluating the stratification of the rates is 
important. For example, Figure 1 shows that a larger number of 
sample paths may be required for longer term instruments, as the 
range of interest rate level is much wider as the time horizon 
increases. 

Rate Stratification 
can be used to 
determine 
structured 
sampling for 
stress test and 
path dependent 
instrument pricing
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Figure 2. Rate Surface (February 1, 2007) 

The rate surface depicts the rate level over a range of states i and time n, as the number of 
quarters. The results show that the evolution of the rate can exceed 10% and will remain positive in 
all states.   

Figure 1 is a Rate Surface depicting the short rates of the lattice. The figure shows that 
the surface is not constrained by any ad hoc rate floors and is therefore consistent with 
arbitrage-free assumptions. At the same time, the rates do not become unreasonably negative 
nor unreasonably high.  

1. RATE SURFACE

The stratification of the probabilities of the short rate reaching a particular range of rates is 
as explained by equation (9) and by Figure 1. Figure 1 and Figure 2 depict the stratification of 
rates under time n and state i of a binomial lattice.  The two surfaces identify the interest rate 
region that is most important to the valuation of a particular financial instrument. The results 
show that any sparce sampling of interest rate paths in valuing path dependent instruments 
must consider the relevant interest rate region for valuation of the instruments. Figure 2 and 
Figure 3 provide that important information. 

g(i, n; p) = �n 𝑖  �𝑝𝑝
𝑖𝑖 (1 − 𝑝𝑝 )𝑛𝑛 −𝑖𝑖

CALIBRATED RATE SURFACES AND MODEL 
SPECIFICATION

In this section, we consider a particular arbitrage-free rate model where g(i; n, p) is the 
binomial probability with p. The model will be used to simulate results based on historical 
swaption prices to determine the rate surfaces. In particular, we let 

(10)

Rate Surface of 
the Local 
Volatilities Models 
can be visualized 
to ensure the 
reasonableness of 
the evolution of 
the interest rate 
movements
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Figure 3.  Rate Surface (August 19, 2019) 

By way of contrast to the rate surface on February 01, 2007, the interest rate can be negative and 
the highest rate level is below 7% over ten years. The dark blue color represents the low rate level 
while yellow represents high rates. 

The evolution of the short rate provides transparency of the model, ensuring that the rate 
movements exhibit reasonable behavior. Figure 2 seems to suggest that many interest rate 
paths lie in the negative rate region. But Equation (9) shows that the large number of paths in 
the negative rate region does not imply the market implied probability of reaching negative 
rates is high. The stratification of the negative rates is, in fact, small on this evaluation date. 

2. MODEL SPECIFICATION

Many current models involve complex specifications of interest rate 
models. For example, constraints on flooring interest rates, transiting 
from normal to lognormal models, and the use of lognormal models 
with adjustments for negative rates.  

Model specification should be relatively simple while ensuring the 
model remains robust. The model is specified by five parameters: (i) a 
specifies the short term volatility; (ii) b  specifies the short-term 
increase or decrease of volatility; (iii) c specifies the decay of the 
volatilities over time; (iv) d is the long term volatilities; (v) p is the 
skewness of the binomial distribution.

The Local 
Volatilities 
Models can be 
specified by only 
five parameters 
providing a 
standardized 
pricing 
methodology
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Historically, the change of short-term volatilities is subject to current market events, each of 
which may have a different lasting impact. For these reasons, parameters (a, b) are 
implied from the market pricing. Because of the difference between the perceived long 
term and short term uncertainties, parameter (c, d) captures the transition from the short 
term volatility to the long term volatility level. Finally, the volatilities have to depend on 
the rate levels, and the perceived dependence is captured by p.

The figures below compare the rate surfaces at different historical times. Figure 2 and Figure 
3 present the rate surfaces on February 1, 2007, and August 19, 2019. The calibrated rate 
surfaces show the impact of the upward sloping yield curve in 2007 versus the inverted yield 
curve of 2019 as the rates drift upward in the former and downwards in the latter. Also, 
note that the calibrated rate surface has negative interest rates. 

Model Parameter a b c d p 
Calibrated values 0.0024 0.0000 0.0176 0.0025 0.4516 

Figure 4. Rate Lattice (positive interest rates) 

The results show that the long-term annualized volatility is  1.00% and the short-term volatility is 

1.96% with a quarterly decay rate of 1.76% 
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Model Parameter a b c d p 
Calibrated values 0.0042 0.0000 0.0068 0.0020 0.4710 

Figure 5. Rate Lattice (with negative interest rates) 

The results show that the long-term annualized volatility is  0.80% and the short-term volatility is 
2.48% with a quarterly decay rate of 0.68%. The calibrated high short-term volatility may be the 
perception that the Fed may lower the short-term interest rate, balancing the perception of a rise 
in inflation.

Figure 4 and 5 show 10-year interest rate lattices calibrated to 84 at-the-money 
swaptions for February 1, 2007 and August 19, 2019, respectively.  The results show that 
in the low interest rate regime, as compared with the parameters of the high interest rate 
regime, the short-term and long term volatilities are lower. This is reasonable because 
volatilities should be positively related to the rate level. When volatilities are lower, the 
decay rate is also lower because the rate evolutions are more compressed. Finally, as 
expected, in the lower rate regime, the distribution is more skewed, as shown by the 
parameter p. The results seem reasonable.  

The results have the following implications (i) in the low interest rate regime, lognormal 
models may not be providing correct option pricing because the market option 
prices have incorporated implied negative rates; (ii) state independent normal interest 
rate model would often have ad hoc minimum negative rate or zero rate, and the 
specification of the minimum rate can lead to inaccurate option pricing; (iii) trinomial 
lattice model requires adjustments to the probabilities assigned to node points, resulting in 
a more complicated calibration procedure; (iv) non-recombining interest rate models will 
require validation of the accuracy in estimating the rational option exercise rules for 
American type options in the negative rate regimes.
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PRACTICAL IMPLICATIONS OF INTEREST RATE 
MODELS IN A LOW INTEREST RATE REGIME

This paper’s results can address some of the practical issues in the current low interest 
regimes.  We will consider the practical implications in the transactional 
markets, portfolio management, and financial reporting. To illustrate, we consider 
the implications of using “lognormal model” or “normal model.” A lognormal model is 
defined as an interest rate model with volatility proportional to the rate level. Therefore, 
as rates fall, the volatility that the model assumes would become negligible. The normal 
model assumes the rate volatility is independent of the rate level and therefore the model 
rates can become significantly negative. To avoid the unlikely scenarios of extremely 
low rates, the model assumes the floor barrier. But there is no consensus on how low the 
floor rate should be. These models follow the traditional modelling approach of not 
assuming volatility is state dependent and that rates cannot become negative. 

TRANSACTIONAL MARKET

In consumer loan lending, borrowers may not consider a 75 basis 
point rate floor valuable. But in the capital market floor 
derivatives are valuable, as the results above show the implied 
rates may even be negative.  In this case, borrower customers 
tend not to require a lower loan rate for such floor, but the floor 
can be sold or marked to market with value.  

Likewise, the capital market structured funding, such as FHLB 
Structured Put Advances, would have pricing discrepancy 
depending on the model used. Lognormal models would assign 
lower value to the floor than that of the normal model. Similarly, 
in the derivative market, the caps/floors or swaptions pricing 
would depend on the choice of models. But quoting option price 
based on the vol (volatility) is problematic because the quoted 
prices continue to diverge from the market implied volatilities. 
The current practice does not provide counterparties a 
meaningful price quoting standard. Currently, the practice has to 
quote the price based on OIS or LIBOR discounting. Current 
practice also requires disclosing normal or lognormal vol. This 
mechanism for transacting is inefficient. 

The proposed 
model enables 
counterparties 
to transact using 
a meaningful 
price quoting 
standard 
particularly in a 
low interest rate 
regime.
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PORTFOLIO MANAGEMENT AND FINANCIAL REPORTING

The capital market often uses Option Adjusted Spread (OAS) as a 
relative valuation tool. But OAS value depends on the underlying 
interest rate model. For floating rates, the OAS would be tighter 
in a normal model (in part depends on the floor set for such a 
model) than that of the lognormal. Likewise, for Mortgage-Backed 
Securities or 1-4 family 30-year fixed-rate mortgages, the 
prepayment speed would be affected. Many firms use multiple 
models for different purposes. As a result, fixed income portfolio 
management may not measure profitability consistently; the front 
desk profitability measures differ from those for financial 
reporting. 

The interest rate model also affects the measure of credit. Current 
Expected Credit Loss (CECL) is a life-of-loan credit loss concept. As 
explained, the lognormal or normal models can affect the 
expected life of loans. For example, if a normal model assumes a 
floor of 75 basis points, an Adjustable Rate Mortgage would be 
assumed to be equivalent to a fixed-rate mortgage with an 
interest rate of 70 basis points, and in turn affect the life-of-loan 
measure of the Adjustable Rate Mortgage. The change in 
perceived life-of-loan will affect the CECL value for financial 
reporting. Likewise, the amortization of premiums will be affected 
by the choice of model. These practical issues should also affect 
financial reporting. 

These are just some examples illustrating the importance of 
having a consistent interest rate model that is transparent, and 
that can be applicable over a broad range of interest rate regimes 
and applications. 

The proposed 
model provides a 
standardized 
model for many 
applications 
within a financial 
institution.

The proposed 
model is 
consistent with 
CECL accounting 
principles.



CONCLUSIONS

This paper presents a state-time dependent local volatilities 
interest rate model based on Ho-Lee 1984. The model has 
the following attributes: 

• Only five parameters, a, b, c, d, and p that specify the 
model. Therefore, the model is transparent, which is an 
important attribute for an interest rate model, enabling 
counter-parties to establish a standard pricing model.

• The rate surface provides a simple validation of the 
model calibrated results

• Exhibit mean reversion process

• Allows for negative rates while satisfying arbitrage-
free conditions

• The rates do not increase explosively as in a lognormal 
model, and the model remains arbitrage-free without 
flooring of interest rates. The model provides 
computational efficiency for American options without 
numerical approximation errors.

15

The Model belongs to the class of Local Volatilities Models 
that can accept negative interest rates while consistent 
with empirical evidence of interest rate movements.  
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Appendix A: Recursive Algorithm 

For clarity of exposition, we present a recursive algorithm to generate the one period bond 
prices 𝑃𝑃𝑖𝑖𝑛𝑛, using equations (7) and (8).  The recursive algorithm begins with 𝑛𝑛 = 0 and 𝑖𝑖 = 0 

from equation (6). We can solve for  𝛿𝛿00  given that 𝛿𝛿00 = −ln 𝑃𝑃00(1)
∆𝑡𝑡

, where 𝑃𝑃00(1) = 𝑃𝑃(1). Note

that equation (7) is automatically satisfied given that  𝛿𝛿𝑖𝑖𝑛𝑛(0) = 1. 

We now proceed with the recursive procedure. Let 𝑛𝑛 = 1, equation (8) becomes, 

𝑃𝑃𝑖𝑖1 = �
𝑃𝑃(2) (1 + 𝛿𝛿00(0))
𝑃𝑃(1) (1 + 𝛿𝛿00(1))

=
2 𝑃𝑃(2) 

𝑃𝑃(1) (1 + 𝛿𝛿00(1))
 ,        for 𝑖𝑖 = 0

𝑃𝑃01𝛿𝛿00(1),         for 𝑖𝑖 = 1

Now, we substitute the value 𝑃𝑃01 and 𝑃𝑃11  to derive forward volatilities for period 𝑛𝑛 = 1 
and for 𝑖𝑖 = 0 or 1 using (6). 

Now we repeat this procedure for period 2, 𝑛𝑛 = 2. Using equation (7), we can now derive 
the forward volatilities for term 𝑇𝑇 = 2 for 𝑛𝑛 = 0, 1 and 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛.  

We now use equation (7) to determine the one period bond prices, 

𝑃𝑃𝑖𝑖2 =

⎩
⎪
⎨

⎪
⎧ 2 𝑃𝑃(3) (1 + 𝛿𝛿00) 
𝑃𝑃(2) (1 + 𝛿𝛿00(2)) (1 + 𝛿𝛿01)

,  for 𝑖𝑖 = 0

𝑃𝑃02 𝛿𝛿01,       for 𝑖𝑖 = 1
𝑃𝑃02𝛿𝛿01 𝛿𝛿11,  for 𝑖𝑖 = 2

Using the one period bond prices and equation for 𝛿𝛿, we can determine the one period 
forward volatilities 𝛿𝛿𝑖𝑖2, for 𝑖𝑖 = 0, 1, 2. 

This completes the specifications for 𝑛𝑛 = 2 and we proceed to period 3, 𝑛𝑛 = 3. Once again, 
we begin with equation (7) to determine the forward volatilities of terms greater than 1. 

Then we apply (8) to determine the one period bond price for state 0. 

𝑃𝑃03 =
2 𝑃𝑃(4) (1 + 𝛿𝛿00(2)) (1 + 𝛿𝛿01) 

𝑃𝑃(3) (1 + 𝛿𝛿00(3)) (1 + 𝛿𝛿01(2))(1 + 𝛿𝛿02)
 

and 

𝑃𝑃𝑖𝑖3 = 𝑃𝑃03�𝛿𝛿𝑘𝑘−12
𝑖𝑖

𝑘𝑘=1

 

for 𝑖𝑖 = 1, 2, 3. 

From the one period bond prices, we determine one period forward volatilities 𝛿𝛿𝑖𝑖3, for 𝑖𝑖 =
0, 1, 2, 3. This process continues for all maturities  , time periods n and all states i.  
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Appendix B: Rate Stratification 

This appendix derives the rate stratification based on a Local Volatilities model. Suppose 
the max rate and min rate on the lattice at n are r(max) and r(min), respectively. Then 

[r(max,n)− r(min,n)]
n

=  f(n) 
(B.1) 

For a given rate r(i, n), the spread between r(i, n) and r( min, n) is given by, according to 
equation (4). For clarity of exposition, we assume that √∆𝑡𝑡 = 1 

       r(i, n) –  r(min, n)  =  ∑ f(n) ∗ n ∗  g(j, n; p)𝑖𝑖
𝑗𝑗=0

(B.2)     

Substitute f(n) in equation (9) into equation (10), we get 

   [r(i, n) –  r(min, n)]/ [r(max) −  r(min)]   =   ∑ g(j, n; p)𝑖𝑖
𝑗𝑗=0

(B.3) 

Given a rate r, we can determine i* such that 

     ∑ g(j, n; p)𝑖𝑖∗
𝑗𝑗=0 = [r –  r(min, n)]/ [r(max, n)  −  r(min, n)]              (B.4)  

For clarity of exposition, Equation B.4 abuses the notation. Equation B.4 cannot be exactly 
equal both sides of the equation. i* only seeks to determine the left-hand side closest 
while remaining lower than the right-hand side. 

Since the lattice of movement assume upward and downward probability is 0.5, the 
probability of rates falling below r* is given by the cumulative binomial distribution, 

   Prob ( r < r*) =   ∑ �𝑛𝑛𝑗𝑗�0.5𝑛𝑛 𝑖𝑖∗
𝑗𝑗=0

(B.5) 

Equation (B.4) can be rewritten as  

   ∑ �𝑛𝑛𝑗𝑗�0.5𝑛𝑛 𝑖𝑖∗
𝑗𝑗=0 = [r – r(min,n)]

[r(max,n)− r(min,n)]

∑ �𝑛𝑛𝑗𝑗�0.5𝑛𝑛 𝑖𝑖∗
𝑗𝑗=0

∑ g(j,n;p)𝑖𝑖∗
𝑗𝑗=0

    (B.6) 

Substituting Equation (B.6) into Equation (B.5), we have derived 

Prob ( x < r) = [r – r(min,n)]
[r(max,n)− r(min,n)]

∑ �𝑛𝑛𝑗𝑗�0.5𝑛𝑛 𝑖𝑖∗
𝑗𝑗=0

∑ g(j,n;p)𝑖𝑖∗
𝑗𝑗=0

   (B.7)     

When g(i, n; p) = �𝑛𝑛𝑖𝑖 �𝑝𝑝
𝑖𝑖(1 − 𝑝𝑝)𝑛𝑛−𝑖𝑖 then equation B.7 becomes 

Prob ( x < r) = [r – r(min,n)]
[r(max,n)− r(min,n)]

∑ �𝑛𝑛𝑗𝑗�0.5𝑛𝑛 𝑖𝑖∗
𝑗𝑗=0

∑ �𝑛𝑛𝑖𝑖�𝑝𝑝
𝑖𝑖(1−𝑝𝑝)𝑛𝑛−𝑖𝑖𝑖𝑖∗

𝑗𝑗=0
  (B.8) 

QED 
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